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4
Point Processes: Examples

The French physiologist Louis
Lapicque (1866–1952)conceived
the integrate-and-reset point pro-
cess; it successfully describes the
generation of action potentials by a
broad variety of neurons and contin-
ues to enjoy wide use today.

Sir David R. Cox (born 1924),
a British statistician, studied the
superposition of periodic series of
events and, as part of his work in the
textile industry in the 1940s, con-
ceived the doubly stochastic Poisson
process.
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Having set forth a collection of measures useful for examining point processes
in Chapter 3, we now consider a number of examples. Although the examples we
provide do not exhibit fractal behaviorper se, they do play an important role in the
construction of fractal and fractal-rate point processes, as we will see subsequently.

We consider the following processes, in turn1: homogeneous Poisson point pro-
cesses (Sec. 4.1), renewal point processes (Sec. 4.2), doubly stochastic Poisson point
processes (Sec. 4.3), integrate-and-reset point processes (Sec. 4.4), cascaded point
processes (Sec. 4.5), branching point processes (Sec. 4.6), and Lévy dusts (Sec. 4.7).
A broad range of other point processes also finds use in characterizing many diverse
phenomena (see, for example, Bartlett, 1955; Parzen, 1962; Cox & Lewis, 1966;
Feller, 1971; Lewis, 1972; Srinivasan, 1974; Saleh, 1978; Cox & Isham, 1980; Sny-
der & Miller, 1991).

4.1 HOMOGENEOUS POISSON POINT PROCESS

We begin with the one-dimensionalhomogeneous Poisson process, which arises
under a broad variety of circumstances (Parzen, 1962; Cox, 1962; Haight, 1967; Cox
& Isham, 1980). As indicated in Sec. 2.5.2, the definition of this process consists of
two parts. First, for some fixed, constant mean rateµ, we have

E[N(t + s)−N(s)] = µt, (4.1)

independent of the timess andt. Second, events in nonoverlapping segments do not
depend on one another; formally the two differences

N(t2)−N(t1) and N(t4)−N(t3) (4.2)

remain independent for anyt1, t2, t3, t4, satisfyingt1 < t2 ≤ t3 < t4.
Conny Palm2 (1943) was the first to point out that this point process is “without

aftereffects.” As a consequence of its “zero-memory” behavior, both the intervals

1 We consider one-dimensional constructs, although most of these processes havemultidimensional point
processcounterparts (see, for example, Fisher, 1972; Cox & Isham, 1980, Chapter 6).
2 A photograph of Palm is placed at the beginning of Chapter 13.
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HOMOGENEOUS POISSON POINT PROCESS 83

{τk} and the counts{Zk} form sequences of independent, identically distributed
random variables. Because of its simplicity, the homogeneous Poisson process serves
as a benchmark against which other stochastic point processes are often compared. It
plays the role that the white Gaussian process enjoys in the realm of continuous-time
stochastic processes.

A number of other properties follow from the definition provided above (Cox &
Isham, 1980). The times between events follow a decaying exponential probability
density function3

pτ (t) =
{

µ exp(−µt) for t > 0
0 otherwise,

(4.3)

with associated moments
E

[
τk

]
= k!/µk. (4.4)

In particular,E[τ ] = µ−1 andVar[τ ] = µ−2 so thatCτ =
√

Var[τ ]/E[τ ] = 1; this
simple result supports the use of the homogeneous Poisson process as a benchmark.

The interval-based autocorrelation and spectrum assume simple forms as a result
of the independence of the intervals:

Rτ (k) =
{

2µ−2, k = 0
µ−2, k 6= 0 (4.5)

Sτ (f) = µ−2 δ(f) + µ−2, (4.6)

while rescaled range and detrended fluctuation analyses follow the forms given in
Secs. 3.3.5 and 3.3.6 for independent intervals.

The number of counts over a fixed time follows the distribution set forth by Poisson4

in 1837:

Pr {N(t + s)−N(s) = n} = Pr {Z(t) = n} = (µt)n exp(−µt)/n!. (4.7)

Interestingly, this now-famous distribution aroused little interest until 1898 when von
Bortkiewicz wrote a monograph providing a whole host of examples5 for which the
Poisson distribution was applicable (see Quine & Seneta, 1987, for a discussion).

The factorial moments of this distribution are

E
{

[Z(t)]!
[Z(t)− k]!

}
= (µt)k. (4.8)

3 Despite the formal distinction between the density and distribution functions, we often refer to both
simply as “distributions.”
4 The term “Poisson” conventionally denotes both the point process itself and the distribution of the
number of counts in the process. Since the same term refers to two quite different mathematical constructs,
we generally use the full terms to avoid confusion: “homogeneous Poisson process” (or “homogeneous
Poisson” for short) and “Poisson distribution,” respectively.
5 The most celebrated among these, perhaps, is von Bortkiewicz’s (1898) analysis of the number of deaths
from horse kicks in the Prussian army.
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84 POINT PROCESSES: EXAMPLES

In particular,E[Z(t)] = Var[Z(t)] = µt. Further, we have

F (T ) = A(T ) = 1 a)

RZ(k, T ) =
{

µT + µ2 T 2, k = 0
µ2 T 2, k 6= 0 b)

SN (f) = µ2 δ(f) + µ c)
G(t) = µ δ(t) + µ2 d)

Var [Cψ,N (a, b)] = µ
∫

ψ2(x) dx e)
Dq = 0. f)

(4.9)

The quantityµ that appears in Eqs. (4.1) and (4.3)–(4.9) takes the same value in each
equation.

The homogeneous Poisson process successfully models a whole host of phenomena
over short times, including radioactive decay (Sec. 2.5.4), the commencement of
telephone conversations at large exchanges (Sec. 13.1), and the times at which falling
raindrops hit the ground. These phenomena have in common the combination of
events from many independent sources, so that over a short time no single source
contributes significantly to the total set of events.

This broad range of applications of the homogeneous Poisson process highlights
the convergence property of superpositions of point processes, which we now ex-
amine. Formally, we begin with a collection of independent counting processes
{N1,k(t)}, each with a mean rateµ1,k. Consider the sum of the firstM of these
processes

N2,M (t) ≡
M∑

k=1

N1,k(t), (4.10)

which has a total rate

µ2,M =
M∑

k=1

µ1,k. (4.11)

Now scale the time axis by a factor ofµ0/µ2,M , whereµ0 is any fixed constant rate.
This yields

N3,M (t) ≡ N2,M (tµ0/µ2,M ) =
M∑

k=1

N1,k(tµ0/µ2,M ); (4.12)

the processN3,M (t) has a rateµ0 for all M .
In the limit M → ∞, assumingµ2,M → ∞, the superpositionN3,M (t) ap-

proaches a homogeneous Poisson process with rateµ0 (Palm, 1943; Cox & Smith,
1953, 1954; Khinchin, 1955; Grigelionis, 1963; Franken, 1963, 1964; Çinlar, 1972;
Franken, K̈onig, Arndt & Schmidt, 1981). We can readily understand this from an
intuitive point of view: for largeM each of the point processesN1,k(t) contributes
few events toN3,M (t) over any finite time interval[0, t), and in the limitM → ∞
no single process contributes more than a single event. The events are therefore
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RENEWAL POINT PROCESSES 85

completely independent of each other, whereupon the homogeneous Poisson process
results.

In addition to the zero-memory and superposition approaches considered above,
many other routes also lead to the homogeneous Poisson process. One example is
sparse random selection from an arbitrary point process (Cox & Isham, 1980), a topic
considered further in Sec. 11.2.3.

4.2 RENEWAL POINT PROCESSES

The independence property of the homogeneous Poisson process tells us that the set
of intervals between adjacent events{τn} are independent and identically distributed.
This provides an alternate definition of this process: an independent and identically
distributed set{τn} with a probability density function specified by Eq. (4.3).

A ready generalization of the homogeneous Poisson process lies in choosing an
arbitrary interevent-interval probability density function while retaining its indepen-
dent and identically distributed features. The result is arenewal point process; the
name derives from the fact that the process begins anew (undergoes a renewal) at the
occurrence of each event. Renewal processes are often used to describe the behavior
of parts such as light bulbs since the failure of one part results in its replacement with a
replica chosen at random with an identicala priori lifetime distribution (Lotka, 1939;
Feller, 1941; Doob, 1948; Smith, 1958; Takács, 1960; Parzen, 1962; Cox, 1962; Cox
& Isham, 1980). The origins of renewal theory lie in the life tables of the citizens
of London and Breslau published in the late 1600s (see Daley & Vere-Jones, 1988,
Chapter 1).

As with other point processes treated in this book, we generally consider stationary
versions of renewal point processes, in the sense of Eq. (3.2). For renewal point
processes only, the term “equilibrium” means stationary, whereas the term “pure”
denotes a renewal point processes that begins with an event.

For any renewal point process the sequence of intervals{τk} exhibits indepen-
dence by construction; this leads to simple forms for second-order interval-based
statistics. However, such simplicity does not extend to other measures, such as the
coincidence rate, the spectrum of the point process, or statistics derived from the
sequence of counts,{Zk(T )}. Nevertheless, explicit expressions exist that quantify
the characteristics of the renewal point process in terms of the interevent-interval
probability density functionpτ (t).

We begin the study of stationary renewal point processes with construction of the
coincidence rate. The density functionpτ (t) itself describes the probability of an
event occurring at a timet given an event at the origin, with no intervening events.
To obtain the probability of an event occurring at a timet given an event at the origin,
with exactly one intervening event, we simply add the two (independent) random
variables. The corresponding probability density is then simply the convolution of
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86 POINT PROCESSES: EXAMPLES

pτ (t) with itself

p?2
τ (t) = pτ (t) ? pτ (t) =

∫ t

0

pτ (t− s) pτ (s) ds, (4.13)

where? denotes the convolution operation andp?2
τ (t) representspτ (t) convolved with

itself.
Continuing in this same way yields

p?n
τ (t) = p?(n−1)

τ (t) ? pτ (t) =
∫ t

0

p?(n−1)
τ (t− s) pτ (s) ds (4.14)

for preciselyn− 1 intervening events, wherep?n
τ (t) representspτ (t) convolved with

itself n times, and we employ the notational conveniencep?0
τ (t) = δ(t), the Dirac

delta function. Summing over all possible numbers of intervening events, normalizing
by the conditional probability of an event att = 0, and admitting negative values oft
yields the coincidence rate for a renewal point process (Feller, 1971; Lowen & Teich,
1993d),

G(t) = E[µ]
∞∑

n=0

p?n
τ (|t|). (4.15)

We can obtain the spectrum of a renewal point process (Lukes, 1961) via the
Fourier transform of Eq. (4.15):

SN (f) ≡
∫ ∞

−∞
e−i2πft E[µ]

∞∑
n=0

p?n(|t|) dt

= E[µ] + 2E[µ] Re

{∫ ∞

0

e−i2πft
∞∑

n=1

p?n(t) dt

}

= E[µ] + 2E[µ] Re

{ ∞∑
n=1

∫ ∞

0

e−i2πftp?n(t) dt

}

= E[µ] + E2[µ] δ(f) + 2E[µ] Re

{ ∞∑
n=1

φn
τ (2πf)

}

= E2[µ] δ(f) + E[µ] Re
{

1− φτ (2πf)
1− φτ (2πf)

}
+ 2E[µ] Re

{
φτ (2πf)

1− φτ (2πf)

}

= E2[µ] δ(f) + E[µ] Re
{

1 + φτ (2πf)
1− φτ (2πf)

}
, (4.16)

where the characteristic function of the interevent intervalsφτ (ω) is defined in
Eq. (3.6),Re[z] represents the real part of the complex expressionz, and the delta
function in Eq. (4.16) derives from the constantE2[µ] term in the coincidence rate.
In the low-frequency limit (Lowen, 1992), this reduces to (see Prob. 4.5)

lim
f→0

SN (f) = E3[µ] Var[τ ]. (4.17)
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DOUBLY STOCHASTIC POISSON POINT PROCESSES 87

Substituting Eq. (4.17) into Eq. (3.64) yields

lim
T→∞

F (T ) = lim
T→∞

A(T ) = E2[µ] Var[τ ] = C2
τ . (4.18)

Feller (1968, Sec. XIII.6, pp. 320–322) obtained this important result for renewal
processes by other means.

Making use of Fourier andz transforms (Lowen, 1992) yields an expression for a
type of factorial moment for renewal processes (see Sec. A.2.1)

E
{

[Z(T ) + k − 1]!
[Z(T )− 1]!

}
= E

{
Z(T ) [Z(T ) + 1] · · · [Z(T ) + k − 1]

}

= E2−k[µ] k!
∫ T

0−
(T − t) G?(k−1)(t) dt. (4.19)

In particular, substitutingk = 1 into Eq. (4.19) yields

E[Z(T )] = E[µ] T, (4.20)

a canonical result for all point processes, whilek = 2 and some algebra provides (see
Prob. 4.6)

Var[Z(T )] =
∫ T

−T

(T − |t|) {
G(t)− E2[µ]

}
dt, (4.21)

recalling Eq. (3.52), another result general to all point processes. However, larger
values ofk in Eq. (4.19) apply only to renewal point processes, and not to general
point processes.

Renewal point processes with interevent intervals that have power-law distribu-
tions, as considered in Chapter 7, are known asfractal renewal point processes.
Fractal-based point processes can also be derived from collections ofalternating
fractal renewal processes, as considered in Chapter 8.

4.3 DOUBLY STOCHASTIC POISSON POINT PROCESSES

Another generalization of the homogeneous Poisson process emerges when the rate
µ is modulated. Thedoubly stochastic Poisson processresults from choosingµ(t)
to be a positive-valued continuous-time stochastic rate process rather than a fixed
constant. The resultant process is thusdoubly random: an (unobserved) source of
randomness arises from the fluctuations in the stochastic rateµ(t) while another
source arises from the intrinsic Poisson event-generation fluctuations, given the rate
µ(t).6

6 The designation “mixed Poisson process,” initially used by Bartlett (1955), signifies that the rate is a
random variable (fixed in time) rather than a random process (varying in time). On occasion the term
“compound Poisson process” appears in place of “doubly stochastic Poisson process” but this terminology
is generally reserved for describing cascaded Poisson processes (see Sec. 4.5).
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88 POINT PROCESSES: EXAMPLES

This stochastic point process was conceived by David Cox (1955) to describe the
sequence of stops of a loom in a textile mill.7 This sequence would ordinarily be
expected to form a Poisson process with a fixed rate of stoppage. However, random
variations of the quality of the material provided to the loom lead to fluctuations in
the stoppage rate. Since its development, the doubly stochastic Poisson process has
found wide application in a broad variety of fields (see, for example, Bartlett, 1963;
Cox & Lewis, 1966; Lewis, 1972; Grandell, 1976; Saleh, 1978; Cox & Isham, 1980;
Saleh & Teich, 1982; Saleh, Stoler & Teich, 1983; Teich & Saleh, 1988; Snyder &
Miller, 1991; Teich & Saleh, 2000).

Formally, we have

lim
ε→0

ε−1 Pr
{
N(t + ε)−N(t) > 0

∣∣ µ(t)
}

= µ(t). (4.22)

Figure 4.1 presents a realization of this point process. The fluctuations exhibited in
the rate (a) appear in random form in the ensuing point-process events displayed in
(b). Two statistics follow immediately from Eq. (4.22). Taking expectations of both
sides yieldsE[dN(t)/dt] = E[µ], and integration leads to

E[N(t)] = E[µ]t. (4.23)

Similarly, employing Eq. (4.22) at two different times gives rise to the coincidence
rate

E
[
dN(s)

ds

dN(s + t)
ds

]
= E[µ(s) µ(s + t)]

G(t) = Rµ(t) + E[µ] δ(t), (4.24)

whereRµ(t) denotes the autocorrelation ofµ(t). Taking the Fourier transform leads
directly to

SN (f) = Sµ(f) + E[µ], (4.25)

whereSµ(f) represents the spectrum of the rateµ(t).
Other statistics of this point process derive from those of the rate processµ(t). In

parallel with Eqs. (4.7) and (4.8), we have (Saleh, 1978)

Pr{Z(t) = n} = E{Λ(t) exp[−Λ(t)]}/n! (4.26)

and

E
{

[Z(t)]!
[Z(t)− k]!

}
= E

[
Λk(t)

]
, (4.27)

where we have defined the integrated rate

Λ(t) =
∫ t

0

µ(s) ds. (4.28)

7 The process is also known as aCox process. The appellation “doubly stochastic Poisson process,” often
abbreviated DSPP, was provided by Bartlett (1963).
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DOUBLY STOCHASTIC POISSON POINT PROCESSES 89

Fig. 4.1 a) Sample function of a stochastic rateµ(t). This realization serves as the rate for
a Poisson point process and an integrate-and-reset point process, as considered in turn below.
b) Sample function of the resulting doubly stochastic Poisson process. Events tend to occur
more often when the rateµ(t) assumes larger values, although the randomness introduced by
the Poisson process renders this association probabilistic. c) The integral of the rate increases
until it reaches a thresholdΨ = 1, whereupon it resets to zero and the integration begins anew
(gray). The reset times form a point process known as the stochastic-rate integrate-and-reset
point process (black).

In particular,

Pr{Z(t) = 0} = E
{

exp
[
−

∫ t

0

µ(s) ds

]}
. (4.29)

Equation (4.29), together with Eq. (3.30), yields the interval density

pτ (t) = E[τ ]
d2

dt2
E

{
exp

[
−

∫ t

0

µ(s) ds

]}

=
1

E[µ]
E

{[
µ2(t)− dµ(t)

dt

]
exp

[
−

∫ t

0

µ(s) ds

]}
. (4.30)

Whenthe rate processµ(t) exhibits fluctuations over frequency ranges that are sig-
nificantly lower than the mean rateE[µ], the interval densitypτ (t) takes a simpler
form, and a straightforward expression for the moments ofτ emerges (Saleh, 1978):

E[τn] ≈ n! E[µ1−n]/E[µ] (4.31)

pτ (t) ≈ E
[
µ2 exp(−µt)

]
/E[µ]. (4.32)
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A particularly simple result obtains when the coefficient of variationCµ of this rate
processµ(t) becomes small in comparison with unity. AsCµ → 0, the stochastic rate
processµ(t) approaches a constant, deterministic value. The expectation operators
in Eq. (4.32) then become superfluous, whereupon it simplifies to Eq. (4.3). More-
over, since the rate remains constant, the resulting point processdN(t) becomes the
homogeneous Poisson process. For rate processesµ(t) with a small, but nonzero, co-
efficient of variation (0 < Cµ ¿ 1), the interval density approaches the exponential
form

pτ (t) ≈
{

E[µ] exp
(−E[µ] t

)
for t > 0

0 otherwise.
(4.33)

However, in this case the variation ofµ(t) imparts memory todN(t), so that the
orderingof the intervals differs from that of the homogeneous Poisson process. The
resulting point process is therefore nonrenewal.

Although most doubly stochastic Poisson processes are, in fact, nonrenewal in
nature, the classes of renewal point processes and doubly stochastic Poisson processes
do intersect. In particular, for any distributionP (t), and any positive constant time
tc, the quantity

φτ (ω) =
[
1 + iωtc +

∫ ∞

0

(
1− e−iωt

)
dP (t)

]−1

(4.34)

defines the characteristic function of an interevent-interval distributionPτ (t). A re-
newal point process constructed with this interevent-interval distribution will also be
a doubly stochastic Poisson point processes (Grandell, 1976). Thus, two quite dif-
ferent models generate identical behavior. Conversely, it is impossible to distinguish
between the two models in this case, even with a full description of the process itself
(the probabilities of all possible outcomes over all time).

This highlights the paucity of information generally available in point processes
in comparison with continuous functions of time. The set of event times contained
within a finite interval, for example, completely describes the point process during
that interval. With probability one, this set has a finite dimension. In contrast, the
set of continuous functions over any finite interval forms an infinite-dimensional set.
As we shall see in Chapter 12, this relative sparseness makes identification of an
underlying model quite difficult in practice.

Point processes whose rate functions comprise stochastic processes are examined
in Chapter 10. In particular, if the rate function isshot noise(see Chapter 9), the
associated doubly stochastic Poisson process is known as ashot-noise-driven doubly
stochastic Poisson process(Saleh & Teich, 1982). If the rate function isfractal
shot noise(see Chapter 9), the process is called afractal-shot-noise-driven doubly
stochastic Poisson process(Lowen & Teich, 1991). Point processes in this class
find use in characterizing a multitude of phenomena in the physical and biological
sciences.
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INTEGRATE-AND-RESET POINT PROCESSES 91

4.4 INTEGRATE-AND-RESET POINT PROCESSES

Theintegrate-and-reset, orintegrate-and-fire, model was introduced nearly a cen-
tury ago by Lapicque (1907, 1926). This simple nonlinear construct provides a direct
route for transforming a rate function into a point process.

Integrate-and-reset point processes play an important role in modeling biophysical
phenomena, particularly neural spike trains, since the paradigm offers not only a suit-
able mathematical model, but also a plausible physiological model for the underlying
behavior (Eccles, 1957; Holden, 1976; Tuckwell, 1988; Koch, 1999). These pro-
cesses are closely related tooversampled sigma-delta modulatorsin the domain of
signal processing, where they are used for analog-to-digital conversion (Norsworthy,
Schreier & Temes, 1996).

Like the doubly stochastic Poisson process, the integrate-and-reset point process
depends on a stochastic rateµ(t). However, in this case the sole source of randomness
manifested in the generated point process arises from fluctuations associated with the
rateµ(t); the integrate-and-reset algorithm introduces no additional randomness of
its own.

The algorithm generates an event each time the integral of the rateµ(t) reaches
a value of unity. It then resets the integrated value to zero whereupon the process
begins anew. Formally, we have

tk+1 = inf
u>tk

{
u :

∫ u

tk

µ(s) ds = 1
}

, (4.35)

where{tk} again represents the set of times at which the events occur (rather than
the times between events). A realization of this point process is presented in Fig. 4.1,
where the resulting point-process events (c) are seen to faithfully follow the fluctua-
tions of the rate (a) to within the resolution of the point process.

The absence of additional randomness leads to trivial results for simple forms of
the rateµ(t); in particular, forµ(t) a fixed constant valueµ, the resulting point process
comprises a perfectly periodic train of events spaced from each other by1/µ. The
faithfulness of the transformation also leads to a close correspondence between the
second-order measures ofµ(t) and those ofdN(t), particularly for large times (low
frequencies). For example, whenf ¿ E[µ], we obtain

SN (f) ≈ Sµ(f), (4.36)

in contrast to the corresponding result for the doubly stochastic Poisson process,
Eq. (4.25), which contains an additional term,E[µ], associated with the intrinsic
randomness of the underlying Poisson process. Exact expressions prove difficult to
obtain for the integrate-and-reset process, however, by virtue of its inherent nonlin-
earity.

Again, simple forms emerge for the interevent-interval statistics when the rate
processµ(t) exhibits fluctuations significantly slower than the mean rate of events
E[µ]. In the spirit of Eq. (4.32), we begin with the interevent interval probability
density function for a fixed rate processµ, namelyδ(t−1/µ), and include appropriate
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92 POINT PROCESSES: EXAMPLES

weighting and normalization factors,

pτ (t) ≈ E[µδ(t− 1/µ)] /E[µ]

=
∫ ∞

0

y δ(t− 1/y) pµ(y) dy/E[µ]

= E[µ]−1

∫ ∞

0

y2 t−1 δ(y − 1/t) pµ(y) dy

= E[µ]−1 t−3 pµ(1/t), (4.37)

where we have made use of a particular property of the Dirac delta function, namely
δ(ax) = a−1δ(x). We note that under these conditions the output point process is
generally not renewal because the reset mechanism does not erase the history of the
input process, which is preserved through the fluctuations inµ(t).

We can directly obtain the moments of the interval density from the moments of
the rate:

E[τn] ≈ E[µ]−1

∫ ∞

0

tn−3 pµ(1/t) dt

= E[µ]−1

∫ ∞

0

y1−n pµ(y) dy

= E[µ1−n]/E[µ]. (4.38)

In particular, Eq. (4.38) yields the interval standard deviation, and thence the coeffi-
cient of variation, for an ideal integrate-and-reset point process driven by an arbitrary
stochastic rate, provided that the fluctuations of the rate process are sufficiently slow
(see Prob. 4.9).

For simplicity, we chose the threshold to be unity (Ψ = 1) in Eq. (4.35). Any
positive value would have sufficed without changing the nature of the process, serving
only to divide the rate by the new threshold.

On the other hand, if the threshold varies in time, the character of the resulting
integrate-and-reset point processdN(t) changes substantially. The rationale for con-
sidering models of this form stems from early neurophysiological experiments in
which it was demonstrated that a sequence of identical brief electric currents applied
to a neuron near threshold elicited axonal action-potential responses only in a fraction
of the trials, in random fashion (Blair & Erlanger, 1932, 1933). Behavior of this kind
has been ascribed to fluctuations in threshold (Pecher, 1939; Verveen, 1960; Holden,
1976), also referred to as “fluctuations in excitability.”

A sinusoidally varying threshold, for example, imparts its fluctuations todN(t),
albeit in a nonlinear fashion. The complex interplay between the rate and the thresh-
old, when both vary, forms a rich field of study. We consider two examples with
variable thresholds in this text. The first comprises a threshold that remains fixed
during each integration, but assumes an independent, unit-mean exponential random
value for every event. The resulting point process is then indistinguishable from a
doubly stochastic Poisson process with the same rate function, by virtue of the ex-
ponential interevent-interval density function for the homogeneous Poisson process.
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The other example, which appears in Sec. 6.6, gives rise to a fractal-based point
process from regular Brownian motion; it has found use in modeling the fractal-rate
fluctuations of neural spike trains.

Finally, we mention a generalization of this process, known as theleaky integrate-
and-reset process(Lapicque, 1907; Holden, 1976; Tuckwell, 1988; Park & Gray,
1992). In this case, an internal state variablex increases at a rate proportional to the
instantaneous rateµ(t), while simultaneously decaying to zero with a time constant
tc. Whenx reaches unity, an output event is generated,x is reset to zero, and the
cycle begins anew. The state equation is written as

dx/dt = µ(t)− x/tc, (4.39)

or, equivalently,

x(t) = exp(−t/tc)
∫ t

0

µ(s) exp(s/tc) ds. (4.40)

In the limit tc → ∞ we recover the behavior of Eq. (4.35). The added flexibility
provided by the formalism of Eqs.(4.39) and (4.40) proves useful in some applications;
however, the added mathematical complexity does not warrant our considering it
further here.

4.5 CASCADED POINT PROCESSES

Cascaded point processes, also known ascluster point processes(Neyman & Scott,
1958, 1972; Saleh & Teich, 1983) andcompound point processes(Feller, 1968,
Chapter 12), arise when each event of a point process forms the nucleus for a sequence
of secondary point-process segments.

In the most general formulation, each eventtk of the primary point processdN1(t)
initiates a secondary point processdN2,k(t), which terminates after a random number
Mk = N2,k(∞) of events. All secondary points, taken together as indistinguishable
events, form the output point processdN3(t). Figure 4.2 illustrates this construct.
The primary events can be excluded or included with the secondary processes.

The statistics for a cascaded point process necessarily depend on the details of the
primary and secondary processes that comprise it. General closed-form expressions
do not exist, with a single exception: the mean rate for a stationary process. Consider
a primary point processdN1(t) that generates events at a mean rateE[µ1]. Each such
primary event initiates a secondary process with a mean numberE[Mk] events. For
the mean rateE[µ3] of the cascaded point processdN3(t) itself, we arrive at

E[µ3] = E[µ1] E[Mk] . (4.41)

Within the class of cascaded point processes, two forms have been studied exten-
sively. For both, the homogeneous Poisson process forms the primary process and
the clusters are independent of each other. In theNeyman–Scott cluster process
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a) PRIMARY PROCESSdN1(t)

-
6 6 6

TIME t

b) SECONDARY PROCESSESdN2,k(t)

6 6 66 6

6 6 6 6

-
6 6

TIME t

···
c) CASCADED POINT PROCESSdN3(t)

-
6 6 66 66 6 6 66 6

TIME t

Fig. 4.2 Generation of a cascaded point process. Each event of a primary point process
dN1(t) (a) initiates a secondary point processdN2,k(t) (b) that terminates after a random
number of events. All secondary points, taken together as indistinguishable events, form the
output, which is a cascaded point processdN3(t) (c). The primary events may be excluded or
included in the output. Cascaded point processes are also known as compound processes or
cluster processes.

(Neyman & Scott, 1958; Bartlett, 1964; Vere-Jones, 1970; Neyman & Scott, 1972;
Saleh & Teich, 1982, 1983; Daley & Vere-Jones, 1988), the times between each sec-
ondary event and its corresponding primary event are independent and identically
distributed. In theBartlett–Lewis cascaded process8 (Bartlett, 1963; Lewis, 1964,
1967), each primary event initiates a segment of a renewal point process, so that the
times between adjacent events from a given secondary process are independent and

8 Photographs of Neyman and Bartlett can be found at the beginning of Chapter 10.
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identically distributed. Both forms of cascaded processes are useful for generating
fractal-rate point processes, as considered in Chapters 10 and 13.

Some cascaded point processes are isomorphic to doubly stochastic point pro-
cesses, providing two different ways of viewing the same mathematical object (see,
for example, Quenouille, 1949; Gurland, 1957; Bartlett, 1964; Lawrance, 1972; Ney-
man & Scott, 1972; Cox & Isham, 1980; Saleh & Teich, 1982; Teich & Diament,
1989; Lowen & Teich, 1991). The shot-noise-driven doubly stochastic Poisson point
process, for example, is a particular Neyman–Scott cluster process, as discussed in
Chapter 10.

4.6 BRANCHING POINT PROCESSES

Cascading need not be limited to two stages. Consider, for example, a shot-noise-
driven doubly stochastic Poisson point process followed by a linear filter that converts
the pulsatile sequence of events into a stochastic rate function suitable for driving a
succeeding Poisson process, which is followed by another linear filter, and so on.
The result is a cascade of shot-noise-driven doubly stochastic Poisson processes.
The multifold statistics of the events at the output of an arbitrary number of such
stages have been determined (Matsuo, Saleh & Teich, 1982). In accordance with
expectations, the greater the number of stages, the larger the variability at the output.

The stages can also be constructed in such a way as to compriseThomas point
processes(Matsuo, Teich & Saleh, 1983), so that trigger events are carried forward
from each stage to the next. In the limit as the number of such cascaded Thomas stages
increases to infinity, while the mean number of added events per event of the previous
stage becomes infinitesimal, the result converges to aPoisson branching process
(Matsuo, Teich & Saleh, 1984). In particular, when the branching is instantaneous,
the limit of continuous branching yields theYule–Furry branching processwith an
initial Poisson population (Matsuo et al., 1984). The theory of branching processes,
originally developed in connection with the survival of family names, has a long
and august history in the annals of mathematics (Bienaymé, 1845; Watson & Galton,
1875; Yule, 1924; Furry, 1937; Kolmogorov & Dmitriev, 1947; Kendall, 1949, 1975;
Harris, 1989).

4.7 LÉVY-DUST COUNTEREXAMPLE

We conclude this chapter with an example of a random collection of points that does
notcomprise an orderly point process. Mandelbrot (1982) coined the termLévy dust
to describe a particular random collection of points on a line segment. Its definition
follows. Consider a finite-length segment of such a set, and count all the intervals
between adjacent points that exceed a valueε; this number varies asε−c for some
c > 0. All such intervals are independent of each other. Thus, the interval distribution
exhibits scaling behavior and Lévy dusts belong to the class of one-dimensional fractal
objects; indeed, they resemble randomized versions of the Cantor set.
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Moreover, Ĺevy dusts resemble fractal renewal point processes (Chapter 7) in their
interval independence and in their scaling behavior. However, these sets do not form
orderly point processes. Asε becomes smaller, the number of intervals grows without
limit; an infinite number of intervals lie in many segments. Consequently, all but an
infinitesimal fraction of the intervals have a vanishing length. In particular, in any
neighborhood about any point in the set, an infinite number of other points exist,
violating the definition of an orderly point process.

Problems

4.1 Normalized variance for an integrate-and-reset point processConsider an
integrate-and-reset point process with constant rate. All interevent intervalsτk there-
fore assume the same fixed valueτ , for all k, for this perfectly periodic point process.
To render this point process stationary, while maintaining its periodic form, we ran-
domize the absolute times. The time between the origin and the event that follows it
is taken to be uniformly distributed in the interval(0, τ). Equivalently, the forward
recurrence time from any fixed times selected independently of the point process is
given by

pτ (t) =

{
1/τ 0 < t < τ

0 otherwise.
(4.42)

4.1.1. Find an expression for the count variance,Var[Z(T )], and show that it
cannot exceed14 .

4.1.2. Findan expression for the normalized variance,F (T ).

4.2 Time statistics of the homogeneous Poisson processLet dN(t) represent a
homogeneous Poisson process with rateµ. Now choose a timev independently of
dN(t).

4.2.1. What is the probability density of the time remaining to the next event
(forward recurrence time)?

4.2.2. What is the probability density of the time since the last event (the backward
recurrence time)?

4.2.3. What is the probability density of the intervalτ∗ within whichv lies?
4.2.4. Explain the difference between the expression derived immediately above

and that in Eq. (4.3).

4.3 Generalized dimensions for a homogeneous Poisson processAs indicated in
Sec. 3.5.4, the generalized dimensionsDq assume integer values for nonfractal point
processes. Consider the case of a homogeneous Poisson processdN(t) with rateµ.
Calculate expressions forE

[ ∑
k Zq

k(T )
]

for a segment of that process of duration
L. For bothq = 0 andq = 2, find the associated limiting forms for large and small
values ofT . Verify, for both values ofq, thatDq = 0 in the sense of Eq. (3.70),
and thatDq = 1 in the sense of Eq. (3.72), thereby confirming that the homogeneous
Poisson process is a nonfractal point process.

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



PROBLEMS 97

4.4 Renewal process with exponential interval densityUse the steps listed below
to demonstrate that a renewal point process constructed from exponentially distributed
random variables, as in Eq. (4.3), satisfies Eqs. (4.1) and (4.2), and therefore must
coincide with the homogeneous Poisson point process.

4.4.1. Show that the point-process spectrum follows the form of Eq. (4.9c) and
use Eq. (3.59) to obtain the mean rate.

4.4.2. Show that Eq. (4.9d) provides the coincidence rate of this constructed pro-
cess and that this establishes that nonoverlapping intervals are uncorrelated.

4.4.3. Extend this result to establish independence.

4.5 Renewal-process spectrum at low frequenciesProve Eq. (4.17).

4.6 Count variance for renewal point processesShow that substitutingk = 2 in
Eq. (4.19) indeed yields Eq. (4.21).

4.7 Gamma renewal point processA gamma probability density function takes
the form (Parzen, 1962; Cox & Isham, 1980)

pτ (t) =

{
[Γ(m)]−1 τ−m

0 tm−1 exp(−t/τ0) t > 0
0 t ≤ 0,

(4.43)

wherem is theorder of the process9 andΓ(x) represents the (complete) Eulerian
gamma function

Γ(x) ≡
∫ ∞

0

tx−1 e−t dt. (4.44)

In general, the order of the gamma density can assume any positive real value,0 <
m < ∞.

4.7.1. Find the mean, variance, skewness, and kurtosis of the random variable
associated with the probability density function in Eq. (4.43).

4.7.2. Suppose we construct a renewal point process using an interevent-interval
probability density function specified by Eq. (4.43). Find the corresponding point-
process spectrum.

4.7.3. For the particular casem = 2, find the coincidence rateG(t) as well as the
count-based normalized varianceF (T ) and normalized Haar-wavelet varianceA(T ).

4.8 Point-process and rate spectra for gamma renewal point processesEqua-
tion (3.67) relates the rate spectrumSλ(f, T ) to the point process spectrumSN (f).
We examine this relation for two examples from the gamma-renewal-process family:
m = 1 (the homogeneous Poisson process), andm = 2.

4.8.1. CalculateSλ(f, T ) for the homogeneous Poisson process, and show that
Sλ(f, T ) andSN (f) coincide in this particular case when|f | < 1/T .

9 The integer-order gamma density is sometimes called the Erlang density, in honor of the Danish electrical
engineer who used it to characterize waiting times associated with telephone calls (see Chapter 13 for a
discussion of this issue and for a photograph of Erlang). This special form of the gamma density, along
with its derivation, was known earlier (Ellis, 1844), but only in terms of a Gaussian approximation.

S. B. Lowen and M. C. Teich Fractal-Based Point Processes Wiley (Hoboken, NJ), 2005



98 POINT PROCESSES: EXAMPLES

4.8.2. Repeat this exercise for the gamma renewal point process withm = 2, and
show thatSλ(f, T ) andSN (f) no longer agree.

4.8.3. Verify that the two measures do coincide, however, in the limit of small
counting timesT .

4.9 Integrate-and-reset process with a gamma-distributed rateAn integrate-and-
reset process is driven by a rateµ(t) that varies much more slowly than the time scale
corresponding to the longest interevent interval.

4.9.1. Find an expression for the coefficient of variationCτ for the interevent
intervals, as defined in Eq. (3.5).

4.9.2. EvaluateCτ for the special case of a gamma-distributed rate

pµ(x) =

{
[Γ(m)]−1 µ−m

0 xm−1 exp(−x/µ0) x > 0
0 x ≤ 0,

(4.45)

with m > 1 andµ0 a fixed, deterministic rate; the gamma function is defined in
Prob. 4.7.

4.9.3. Why do we requirem > 1?

4.10 Sinusoidally modulated point processesSuppose we have a random rate
defined by

µ(t) = µ0

[
1 + cos(ω0t + θ)

]
, (4.46)

with the random phase angleθ uniformly distributed in(0, 2π] andµ0 andω0 fixed,
deterministic parameters. This renders the process ergodic and, in particular, station-
ary.

4.10.1. Let Eq. (4.46) be the rate of a Poisson point process. Find the mean value,
coincidence rate, and count-based normalized variance for this doubly stochastic
Poisson process.

4.10.2. Now let Eq. (4.46) serve as the rate for an integrate-and-reset point process,
and assume thatµ0/ω0 À 1. Ignoring values ofµ0 such that2πµ0/ω0 assumes a
rational number, find an approximate expression for the interevent-interval probability
density.

4.10.3. Attempt to calculateE[τ2] and explain which assumption breaks down in
the process. Modify Eq. (4.46) to rectify the problem.

4.11 Cascaded point process with Poisson primaries and secondariesLetdN1(t)
represent a homogeneous Poisson point process with rateµ1. Suppose that every
eventk of dN1(t) triggers a secondary point processdN2,k(t), which has a durationτ0

during which it generates events with a constant rateµ2 as a segment of a homogeneous
Poisson point process. Let all secondary points, taken together as indistinguishable
events, form an output point processdN3(t). Assume thatµ1τ0 ¿ 1 so that we can
safely ignore edge effects. By virtue of the memoryless property of the homogeneous
Poisson process, this particular cascaded point process belongs both to the Neyman–
Scott and Bartlett–Lewis families; choosing a random time or a random number of
events is equivalent.
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4.11.1. Find the mean, variance, and normalized variance of the number of points
in an intervalT such thatT/τ0 À 1.

4.11.2. Imagine now that we modulate the primary process rateµ1(t) to transmit
information, settingµ1(t) = µ1 orµ1(t) = 0, and count the number of eventsN3(T ).
Here aµ1(t) = µ1 corresponds to a binary one, andµ1(t) = 0 corresponds to a binary
zero. Find the probabilities of detecting a “one” when a “zero” was sent (an error
known as a “false alarm”), and vice versa (an error known as a “miss”).
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